Perfect powers in arithmetic progression. A note on the inhomogeneous case
نویسندگان
چکیده
منابع مشابه
Perfect powers in arithmetic progression 1 PERFECT POWERS IN ARITHMETIC PROGRESSION. A NOTE ON THE INHOMOGENEOUS CASE
We show that the abc conjecture implies that the number of terms of any arithmetic progression consisting of almost perfect ”inhomogeneous” powers is bounded, moreover, if the exponents of the powers are all ≥ 4, then the number of such progressions is finite. We derive a similar statement unconditionally, provided that the exponents of the terms in the progression are bounded from above.
متن کاملPowers from five terms in arithmetic progression
has only the solution (n, k, b, y, l) = (48, 3, 6, 140, 2) in positive integers n, k, b, y and l, where k, l ≥ 2, P (b) ≤ k and P (y) > k. Here, P (m) denotes the greatest prime factor of the integer m (where, for completeness, we write P (±1) = 1 and P (0) = ∞). Rather surprisingly, no similar conclusion is available for the frequently studied generalization of this equation to products of con...
متن کاملthe effect of consciousness raising (c-r) on the reduction of translational errors: a case study
در دوره های آموزش ترجمه استادان بیشتر سعی دارند دانشجویان را با انواع متون آشنا سازند، درحالی که کمتر به خطاهای مکرر آنان در متن ترجمه شده می پردازند. اهمیت تحقیق حاضر مبنی بر ارتکاب مکرر خطاهای ترجمانی حتی بعد از گذراندن دوره های تخصصی ترجمه از سوی دانشجویان است. هدف از آن تاکید بر خطاهای رایج میان دانشجویان مترجمی و کاهش این خطاها با افزایش آگاهی و هوشیاری دانشجویان از بروز آنها است.از آنجا ک...
15 صفحه اولPowers from Products of Consecutive Terms in Arithmetic Progression
A celebrated theorem of Erdős and Selfridge [14] states that the product of consecutive positive integers is never a perfect power. A more recent and equally appealing result is one of Darmon and Merel [11] who proved an old conjecture of Dénes to the effect that there do not exist three consecutive nth powers in arithmetic progression, provided n 3. One common generalization of these problems ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Arithmetica
سال: 2004
ISSN: 0065-1036,1730-6264
DOI: 10.4064/aa113-4-4